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Abstract 

A least-squares procedure is described for modeling 
an empirical transmission surface as sampled by 
multiple symmetry-equivalent and/or azimuth 
rotation-equivalent intensity measurements. The fit- 
ting functions are sums of real spherical harmonic 
functions of even order, Ylm(- UO) + Ylm(Ul), 2 < l = 
2n _< 8. The arguments of the functions are the com- 
ponents of unit direction vectors, -u0 for the reverse 
incident beam and Ul for the scattered beam, referred 
to crystal-fixed Cartesian axes. The procedure has 
been checked by calculations against standard 
absorption test data. 

Introduction 

Absorption-corrected Bragg intensities are given by 

Icorr = Imeas / A , (1) 

where 

A =  V -  l f exp [ -  IZ(to + tl)]d3t, (2) 
v 

and to and tl are, respectively, the incident-beam 
path length to and the scattered-beam path length 
from each crystal-volume element d3t. 

For a crystal of well defined size and shape, the 
transmission factors A can be evaluated by Gaussian 
numerical integration over a grid of incident and 
scattered beam paths through the crystal for each 
reflection (Busing & Levy, 1957; Wuensch & Prewitt, 
1965; Coppens, Leiserowitz & Rabinovich, 1965; 
Coppens, 1970; DeTitta, 1985) or by an analytical 
method based on subdivision of the crystal into 
Howells polyhedra (Howells, 1950; Wells, 1960; de 
Meulenaer & Tompa, 1965; Alcock, 1970). 

For a crystal of ill defined size and shape, in the 
absence of information needed to calculate the beam 
path lengths, we express the transmission factor as 

A = Asph/Aaniso, (3) 

where Aspn = Asph(IZ,R,20) is the transmission factor 
for an 'equivalent' spherical crystal and Aaniso is a 
correction factor, i.e. a reciprocal transmission 
factor, for absorption anisotropy. All the scattering- 
angle dependence of the overall transmission factor 
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is contained in Asah, which increases very nearly 
linearly with (sin 0) ~ [Bond (1967), as illustrated by 
Dunitz (1979)]. The quantity Aar, so is intended to 
correct only for anisotropy of the crystal dimensions. 

An equivalent spherical crystal radius can be esti- 
mated from an average of crystal diameters meas- 
ured with the aid of a microscope or as the radius of 
a sphere or the semidimension of a cube of volume 
equal to that estimated for the crystal. If the crystal 
is tablet-, plate-, or blade-shaped, an equivalent 
spherical radius can be estimated from the minimum 
crystal thickness and the minimum anisotropy cor- 
rection factor, 

exp ( - br train) - "  Asph/Aaniso, rain, 

by interpolation on In Asp h -" In [Aaniso, rain × 
exp(--/Ztm~.)] to find R from Asph(IZ,R,20) tables 
(Bond, 1967; Dwiggins, 1975). 

We formulate the anisotropy correction as 
/max 1 

Aaniso = 1 + Z Z almflm, (4) 
l = l m = - I  

where 

fire = [.Ylm(--Uo) + y t m ( U 0 ] / 2  (5) 

and the Ytm are real spherical harmonic functions 
whose arguments -Uo and ul are unit direction 
vectors referred to crystal-fixed orthonormal axes for 
the reverse incident beam and scattered beam, 
respectively. The beam-direction vectors are calcu- 
lated from the crystal orientation and diffraction 
geometry for each intensity measurement and the 
empirical coefficients aim are obtained by a least- 
squares analysis of the differences among intensity 
measurements that are equivalent by symmetry 
and/or azimuthal rotation. The key requirement is a 
sufficient multiplicity of equivalent measurements so 
that the transmission paths through the crystal are 
sampled thoroughly. 

Equations (4) and (5) neglect scattering and 
approximate Aaniso as the average of corrections for 
'straight-through' beams in the directions -Uo and 
u~. Allowance for scattering is made by the factor 
Asph in (3). These approximations have been vali- 
dated in earlier work on empirical absorption correc- 
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tions (North, Phillips & Mathews, 1968; Flack, 1974; 
Walker & Stuart, 1983; Katayama, 1986). 

Although the Aamso are intended to correct only 
for absorption anisotropy due to a nonspherical 
crystal shape, they will of course be affected by any 
and all differences among equivalent reflection inten- 
sities, whatever their source. If, for example, it is 
suspected that the crystal exhibits anisotropic extinc- 
tion, then the strongest reflections should be 
excluded from the least-squares fit of the arm. 

Since we are concerned with an anisotropy correc- 
tion to a spherical transmision surface, an expansion 
in multipolar spherical harmonic functions is a quite 
natural choice. The orthogonality of the Ytm makes 
fitting the coefficients arm easier than fitting coeffi- 
dents aOkt and bukz for a Fourier expansion in the 
diffractometer setting angles, 

A = Z Z ~'. ~'. aijktCOS (i20 + j¢o + k x  + lq~) 
-- imax --Jmax -- kmax -- lmax 

+ bok t sin (i20 +rio + k x  + lq~), 

for which the determination of appropriate expan- 
sion orders /max, jm~x, km~x and /max is not .trivial 
(Flack, 1977). Of course, either a spherical harmonic 
or a Fourier expansion can, in principle, follow the 
absorption anisotropy more faithfully than can 
azimuthal correction curves A = A(q~lx = 90 °) or A = 
A(01X=90 °) (North, Phillips & Mathews, 1968; 
Kopfmann & Huber, 1968; Huber & Kopfmann, 
1969). 

If a crystal of any shape is uniformly irradiated, its 
anisotropic transmission surface must be centro- 
symmetric, since reversal of the beam direction, or 
180 ° rotation of the crystal about its centroid, gives 
the same absorption paths. Absorption anisotropy 
should, therefore, be modelled with only even 
functions, Ytm with l = 2n. Odd functions, with l = 
2n + 1, can be introduced to attempt to deal with 
problems of nonuniform irradiation due to an 
inhomogeneous quasiparallel beam incident from a 
crystal monochromator or to a specimen crystal that 
is over-sized or mis-centered. 

Least-squares fitting of the expansion coefficients 

The empirical coefficients arm are obtained by a linear 
least-squares fit minimizing a total residual 

X 2= X 2 + w a x ) ,  (6) 

in which the first term is an intensity-fit residual for 
Aa~iso = Ah, and the second term is an anisotropy- 
restraint residual to restrain the fitted Aht toward an 
average value (Ahi)= 1. The subscript h indexes the 
unique reflections and i indexes the n = nh equivalent 
measurements of a reflection h. 

The intensity-fit residual is defined as 

x, 2 2 wh, 2, 
hi=l  

i 1Whi 

,7, 

where Wht = 1/0"2(Ih,) and the Ih~ = IF(h)] 2 are multiple 
symmetry-equivalent and/or azimuth rotation- 
equivalent intensity measurements reduced to 
squared structure-factor magnitudes. 

The anisotropy-restraint residual is defined as 

WA/~g = WA2 Z (Ahi-- 1) 2, 
hi=l  

( l ) 
WA'~A2= WA~ i= ~'1 l=l~l m~--I a'mfN'hi 2, (8) 

A constant weighing factor wA multiplies X)  to scale 
the restraint residual relative to the fit residual and 
the value of wa governs how tightly the restraint 
toward (Ah~)= 1 applies. Depending upon the multi- 
plicity of equivalent Ihi data and, in particular, upon 
how well the data sample the absorption paths 
through the crystal, using wA = 0 might allow unrea- 
sonable extreme excursions of the fitted transmission 
surface in regions not sampled by multiple equivalent 
data. 

To choose an appropriate value for wa, we note 
that, if the differences among the equivalent Ih~ are 
due mainly to the differences among the Ah,, we 
expect the normalized mean-square deviation of the 
Ahi from unity to be 

X g Z 2 Whi(Ihi- (Ihi)h) 2 
h i = R 2. (9) 

Z Z Ah 2 Z Z whilh 2 
h i h i 

If (Ah~)----- 1, the denominator on the left is 

A 2 ~ . Z  hi "--'N, 
h i 

where N = Y~hnh is the total number of measurements 
used in the fitting. Thus, we expect 

XA 2 "" NRg  

and, in order to have a standardized mean-square 
deviation 

w A x ) I N  = 1, 

we should choose 

W a -  1/Rw 2. (10) 
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This has the sensible property that the larger the 
differences among the equivalent Ih~, the more slack 
the restraint toward (Ahg)'" 1. 

Leas t - squares  normal  equat ions  

For minimization of the intensity-fit residual, a 
change of variable (Katayama, 1986) simplifies the 
development and gives least-squares normal equa- 
tions that are explicitly linear in the desired coeffi- 
cients a~m. The intensity-fit residual, (7), becomes 

"¥ ? = ~h ~ w hi ~---- Jhj Ahj (11) 
i=l j 1 

with the change of variable 

1 " tJhJ=[ --(Wh'/k~=iWhk)]lh] 

if j ~ i ,  

if j =  i. 

(12) 

Then, rewriting (4) with a single dummy index for 
the expansion orders, 

lma x l k m a  x 

Ah~ = 1 + Z Z almflm,hi = 1 + Z akfk,hi, 
1=  1 m =  --1 k =  1 

we get 

X2=~h ~ = Jhj 1+ ~'. ak.fk,hj i 1 Whi j 1 k = 1 

X2= ~h ~Wh, ZJh,+ ZakZJhifk.sj 
• j k j 

and the condition for a minimum, 

OX2/Oal = 2 Z ~i Whi( ~',Jhj -b ~ ak ~. Jhyfk,hj) 
j k j 

= O, 

gives the normal equations for the intensity fit, 

~kak~Wm(~JhJfk.hJ)(ZJhJft .hJ) 

l =  1, 2, ..., k~x .  (13) 

Introducing the restraint toward (Ahi)-----l, and 
minimizing the total residual, we have 

g 2 = X 2 + wAX f = X 2 + wA ~ Z akfk,h, 
h " \ k = l  

aX21aa, = (aX21Oat) + w,4(OXa21Oat) 

= OX2/Oat+ 2WA~ ~ ( ~k • 

"- O, 

and the restrained normal equations, still linear in 
the coefficients aim, become 

~kak~h~i[WAfk,hifl, hi'[-Whi(~jJhjfk,hj)(~jJhjfl, hj)] 

l =  1, 2, ..., kraax. (14) 

Evaluation of the fitting funetiom f rom the diffraction 
geometry 

Cartesian arguments of the spherical harmonic func- 
tions are obtained via the rotation matrix for 
Eulerian diffractometer setting angles: 

to, X, ~0---, R , R x R , o  = R = ( X Y Z ) ;  

X, Y, O, i~----~Uo, U 1 ~y~,,(-Uo), Ylm(Ul). (15) 

We employ diffractometer axes defined (Hamilton, 
1974) such that, for each reflection measurement, 
components of orthonormal vectors X, Y and Z 
referred to crystal-fixed orthonormal axes are given 
by the columns of the rotation matrix 

R =  

R = 

cos  sin  
- s i n ~  cos~p 

0 0 

cos ~, cos to - sin ~p sin to cos X 

- sin ~p cos to - cos ~p sin to cos X 

sin X sin to 

0 0,/cos  sin  

c o s x  s i n x J / - s i n ~ o  cos to 

- sin X cos X 0 0 

cos ¢ sin to + sin ¢ cos to cos X 

- sin ~, sin to + cos ~, cos to cos X 

- sin X cos to 

0 

sin tp sin X 
| 

cos ¢ sin X~, 
/ 

cos X / 

(16) 
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X = R  , Y = R  and Z = R  . (17) 

The incident- and scattered-beam wave vectors So 
and sl are obtained from the diffraction vector D = 
S l - S o  and its normal T = sl + So in the equatorial 
plane, as shown in Fig. 1 (Coppens, 1970). The 
definition of diffractometer axes (Hamilton, 1974) is 
such that the unit vector Y is parallel to 0 and the 
unit vector X is antiparallel to T. Thus, 

s, - So = D = Y[2(sin 0)/A] 

s~ + So = T = - X [ 2 ( c o s  0)/A], 

sl = (T + D)/2  

So = ( T -  0) /2  

and the corresponding unit direction vectors are 
given by 

U = AS,  

u l = - X c o s 0 + Y s i n 8  
(18) 

Uo = - X  cos 0 - Y sin 0. 

The components of the unit vectors u are their 
direction cosines, which are Cartesian arguments for 
the real spherical harmonic functions yt,,,(u). Car- 
tesian forms for evaluating the functions have been 
published for l_< 7 (Paturle & Coppens, 1988) and 
the forms for / =  8 are given in the Appendix, which 
was kindly provided by Dr Antoine Paturle (1990). 

S O R T A V  for sorting, inter-subset scaling, averaging 
and analysis of variance for multiple equivalent 
intensity measurements [Blessing (1989) and earlier 
references cited therein]. The new routines have been 
tested against synthetic standard absorption test data 
for the so-called Alcock irregular crystal (Flack, 
Vincent & Alcock, 1980). With the p r o g r a m  
ABSORB (DeTitta, 1985), Eulerian diffractometer 
setting angles (20,w,X,~0) were calculated for the test 
crystal for - 3  _< h,k,l<_ + 3  and #t = 0, 10, 20, ..., 
180 ° and transmission factors A(h,k,l,O) were com- 
puted by Gaussian numerical quadrature on a 16 x 
16 x 16 grid. This gave a set of 6498 transmission 
factors for 171 unique reflections in Laue group 1. 
The transmission factors ranged from 0.121 to 0.344 
and these were taken to be intensity data for testing 
the new routines. 

Table 1 and Fig. 2 summarize tests of the multi- 
pole expansion limits. The statistics of fit for the 
transmission surface improved significantly as even 
multipoles were added through order eight, but, 
as anticipated, added odd multipoles had no signifi- 
cant effect. The anisotropy-corrected and then aver- 
aged unique data from the fit with l = 1 through 
8 and Npa~ = 80 were essentially the same as those 
from the fit with l = 2 ,  4, 6, 8 and Npa,=44.  
Averaging the two unique data sets gave Rmerg e = 
[ Z ( I -  (I))2/XI2] 1/2 = 0.0001, a further confirmation 
that the odd multipoles were superfluous because the 
transmission surface was centrosymmetric. 

In the calculations summarized in Table 1, the 
models were fitted against all the generated data, 
with weight wA = 0 for the anisotropy restraint resid- 
ual. Table 2 summarizes a test of the restraint condi- 
tion with the l = 2, 4, 6, 8 model. Test 1, against all 

Test calculations 

Routines for carrying out the calculations outlined 
above have been incorporated into the program 

S1-S0 $1 SI+S0 

x Z " ~ "  ~ "  20 0 §0 

I gol=lgxl =1/7. 
g l -g0=~)  Ibl=2(sin0) / Z. 

~x+~o=q (rl = 21g01 cos 0 = 2(cos 0) / X 

Fig. 1. Diffraction geometry for incident beam so and scattered 
beam s~ with wave-vector magnitudes Isol-- Isd = 1/a.  
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Fig. 2. Goodness of fit v e r s u s  number of parameters from the tests 
of the multipole expansion limits summarized in Table 1. The 
points are labelled with the maximum even and maximum odd 
multipole orders. 
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Table 1. Tests o f  even and even-plus-odd multipole expansion limits 

The  statistics o f  fit are the s tandardized roo t -mean-square  deviat ion o f  equivalent  da ta  f rom their  means,  

Z =  [Z  ~i w m ( l h i A m -  ([hiAm)h)2/(N4ata - N m e a n s -  Npar) ]  1/2 

and the normal ized  roo t -mean-square  deviation,  

/ I  A \ ~2 /~"~"W [ I  A ~2"11/2 R = [ Z Z W h , ( I h i A h i - -  \ hi m/hJ I/__,Z, *i~ *, hiJ J • 
h i - -h  t 

Since the test calculat ions were made  with 'error-free '  synthetic data,  all Wh~ = 1. 

/max Aa.i~o 
Even Odd  Np~- Z R Min imum M a x i m u m  Mean  ___ r.m.s, deviat ion 

0 0 0 0.04129 0.1662 1.0 1.0 1.0 +__ 0.0 
2 0 5 0.01506 0.0630 0.607 1.31 1.01 __. 0.168 
4 0 14 0.00950 0.0399 0.658 1.45 1.01 ___ 0.187 
6 0 27 0.00689 0.0289 0.655 1.56 1.01 +__ 0.193 
8 0 44 0.00616 0.0258 0.651 1.62 1.01 _ 0.195 
8 1 47 0.00613 0.0257 0.650 1.62 1.01 _ 0.195 
8 3 54 0.00587 0.0246 0.650 1.62 1.01 ___ 0.195 
8 5 65 0.00574 0.0241 0.650 1.62 1.01 __. 0.195 
8 7 80 0.00564 0.0236 0.651 1.62 1.01 ___ 0.196 

Table 2. Test calculations fit t ing Npar = 44 coefficients, arm with l = 2, 4, 6, 8 

Tests 1 and 2 are wi thout  and test 3 is with an an iso t ropy  restraint.  The  agreement  statistic is 

R = [Z Z w,,(I,,A,, - (t,,A,,)h)2/Z Z w,i(I,,A,,)2] ''2, 
h i h i 

where all A,,. = 1 before the least-squares fitting and all w,,. = 1. The  min imum and max imum values o f  Aa,i~o = A,~ are fol lowed by  their  
s tandard  deviations (in parentheses) est imated f rom the least-squares var iance-covar iance  matr ix  for  the fitted at,.. The  mean  values are 
fol lowed by the roo t -mean-square  deviations f rom the mean.  

R Aanis o 

Test  Nda~a Nm . . . .  Before After  Min imum M a x i m u m  Mean  __+ r.m.s, deviat ion 

1 6498 171 0.1662 0.0258 0.649 (2) 1.621 (4) 1.01 _.+ 0.195 
2 3204 171 0.1681 0.0235 0.567 (5) 1.430 (11) 0.843 _ 0.197 
3 3204 171 0.1681 0.0281 0.667 (3) 1.511 (7) 0.947 -+ 0.198 

the data and with wa = 0, reduced the normalized 
root-mean-square discrepancy among equivalent 
data R from 16.6 t o  2.6%. In a somewhat more 
realistic test 2, the test 1 calculation was repeated 
using only data with -48_< w +  0_< +58 ° and 
[to - 0[ _< 60 °, which would be mechanically accessi- 
ble on a Siemens (n6e Nicolet n6e Syntex) P3 diffrac- 
tometer. This restriction eliminated about half the 
data and, owing to the 'blind' regions wherein the 
transmission surface was not sampled by the data, 
the range and mean of the fitted anisotropy correc- 
tions were shifted to smaller values. Nevertheless, the 
anisotropy-corrected and then averaged unique data 
set from test 2 agreed with that from test 1 to within 
a least-squares-fitted scale factor k 2 = 1.1364 (5) and 
Rmerg e = 0.0076. In test 3, the test 2 calculation was 
repeated with the anisotropy-restraint residual given 
a weight wA= l /R2= 1/0.16812. This moved the 
range and mean of the fitted anisotropy corrections 
back close to the test 1 values, and the unique data 
sets from test 3 and test 1 agreed to within a scale 
factor k3 = 1.0180 (8) and Rmerg e = 0.0107. 

Application of the new routines to a data set 
measured for an experimental electron-density study 
is described elsewhere (Souhassou, Espinosa, 
Lecomte & Blessing, 1995). 

Extensively commented Fortran77 source code 
and an ASCII file of detailed users' instructions for 
the S O R T A  V program augmented by the routines 
for the empirical absorption correction are available 
on request. Users must bear in mind that reliable 
anisotropy corrections require a quite substantial 
multiplicity of symmetry-equivalent and/or azimuth- 
rotation-equivalent measurements, for at least a 
lower-order subset of data, in order that there be an 
adequate sampling of absorption paths through the 
specimen crystal. 

The author is grateful to Drs Edwin Stevens, 
George DeTitta and Mohamed Souhassou for help- 
ful discussions, to Dr Antoine Paturle for suppling 
the material given in the Appendix and for financial 
support from USDHHS PHS NIH grants nos. 
GM34073 and DK19856. 
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APPENDIX 
Table 3. Cartesian forms for the real spherical harmonic functions with l = 8 (Paturle, 1990) 

These extend the published tabulat ion for l < 7 (Paturle & Coppens,  1988). The arguments  x, y and z are or thonormal  components ,  i.e. 
direction cosines, o f  a unit  vector and  the functions 

Yt.m ---- N,.I,,I C,.tml C,.m (x,y,z) 
are normalized such tha t  

f lyt~.ld/2 = 2 - 8o.t. 
n 

m Csm Cs.lml Ns.lml 

0 6435z s - 12012z 6 + 6930z 4 - 1260z 2 + 35 0.0078125 0.0059609 
1 (715z 7 - 1001z 5 + 385z 3 - 35z)x 0.5625 0.0784858 

- 1 (715z 7 - lO01z 5 + 385z ~ - 35z)y 
2 (143z 6 - 143z 4 + 33z 2 - 1)(x 2 - y:) 19.6875 0.3253786 

- 2 (143z 6 - 143z 4 + 33z 2 - 1)(2xy) 
3 (39z 5 - 26z J + 3z)(x 3 - 3xy 2) 433.125 0.8780415 

- 3 (39z s - 26z 3 + 3z) (3x2y - y3) 
4 (65z 4 _ 26z 2 + 1)(x 4 _ 6x2y2 + y4) 1299.375 0.3411683 

- 4  (65z 4 - 26z 2 + 1)(4x3y - 4x~) 
5 (5z 3 - z)(x 5 - 10x3fl + 5xy 4) 67567.5 2.4892756 

- 5 (Sz 3 - z)(5x4y - 10x2y ~ + y~) 
6 (15z 2 - l)(x 6 - 15x4y 2 + 15x2y 4-  y~) 67567.5 0.3933012 

- 6  (15z: - 1)(6xSy - 20x3y 3 + 6xy 5) 
7 z(x 7 - 21xSy 2 + 35x3y 4 - 7xy 6) 2027025 2.2500000 

-7 z(7x6y - 35x'y 3 + 21x2) p -yT) 
8 x s _ 28x~y2 + 70x4y4 _ 28x2y6 + yS 2027025 0.6152344 

-8 8xTy - 56x~y a + 56x~y 5 - 8xy 7 
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Abstract 

The amplitudes of beams reflected from a crystal 
surface by high-energy electrons are expressed in 
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terms of matrix operators based on Bloch waves. The 
solution is derived in terms of the limiting case of an 
infinite slab and is therefore applicable to cases 
involving overlayers of different composition and 
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